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Weak solutions of problems with m equations with source terms are proposed using an aug-
mented Riemann solver defined by m + 1 states instead of increasing the number of
involved equations. These weak solutions use propagating jump discontinuities connecting
the m + 1 states to approximate the Riemann solution. The average of the propagated waves
in the computational cell leads to a reinterpretation of the Roe’s approach and in the upwind
treatment of the source term of Vázquez-Cendón. It is derived that the numerical scheme
can not be formulated evaluating the physical flux function at the position of the initial dis-
continuities, as usually done in the homogeneous case. Positivity requirements over the val-
ues of the intermediate states are the only way to control the global stability of the method.
Also it is shown that the definition of well-balanced equilibrium in trivial cases is not suf-
ficient to provide correct results: it is necessary to provide discrete evaluations of the source
term that ensure energy dissipating solutions when demanded. The one and two dimen-
sional shallow water equations with source terms due to the bottom topography and fric-
tion are presented as case study. The stability region is shown to differ from the one
defined for the case without source terms, and it can be derived that the appearance of neg-
ative values of the thickness of the water layer in the proximity of the wet/dry front is a par-
ticular case, of the wet/wet fronts. The consequence is a severe reduction in the magnitude
of the allowable time step size if compared with the one obtained for the homogeneous
case. Starting from this result, 1D and 2D numerical schemes are developed for both quad-
rilateral and triangular grids, enforcing conservation and positivity over the solution, allow-
ing computationally efficient simulations by means of a reconstruction technique for the
inner states of the weak solution that allows a recovery of the time step size.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

There is a wide range of physical situations, such as flow in open channels and rivers, tsunami and flood modeling, that
can be mathematically represented by first-order non-linear systems of partial differential equations, whose derivation in-
volves an assumption of the shallow water type. With rare exceptions, the governing equations are hyperbolic. The system of
equations in realistic shallow water models include source terms, that is, terms that are functions of the vector of unknowns.

For sometime it has been accepted that the discretization of source terms can be as challenging as that of the non-linear
advection terms. It must be said that for most cases, even naive discretizations of the source terms work reasonably well, but
there are some well documented situations in which only sophisticated schemes can perform adequately. When solving real
. All rights reserved.
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problems one is likely to encounter all sorts of situations, with a high probability that naive schemes will compromise the
quality and reliability of the solution.

When incorporating the presence of the source terms in a given specific finite volume scheme (Roe’s scheme is used here)
the main focus has been traditionally put on how the numerical scheme can be modified so that it maintains a discrete bal-
ance between flux and source terms. In the context of the discretization of hyperbolic systems of conservative laws a fun-
damental point has been to get schemes that satisfy the preservation of steady-states such as still water equilibrium in the
context of the shallow water system. The difficulty to build such schemes was pointed out by several authors and led to the
notion of well-balanced schemes [9,10,15,19–21].

In this framework the development of robust and efficient explicit finite volume models of shallow water flow has been
the matter of recent research in the computational hydraulics literature. A few efforts have been reported on the search for
the best methods able to preserve the exact conservation property (C-property) [20] in presence of flow over irregular geom-
etries [4,11]. When dealing with simulation problems that involve bed variations and transient flow over a dry bed, these
flow features impose a heavier restriction than the classical Courant–Friedrichs–Lewy (CFL) condition [6,9,19] on the time
step size that may lead to inefficient computations. It is possible to avoid the necessity of reducing the time step and, at
the same time, preventing instability and ensuring conservation at all times by a suitable flux difference redistribution
[11,13].

It can be argued that the presence of source terms warrants the construction of new weak solutions appropriate to the
nature of the equations, rather than the use of those constructed for the simple, homogeneous case. Even ensuring the dis-
crete equilibrium formulated in well-balanced schemes, the direct application of the conclusions derived for the homoge-
neous case to cases with source terms leads to important difficulties. One of the most dramatic is the appearance of
negative values of water depth, not only in wet/dry fronts, but also in initially wet/wet Riemann problems.

Gravity and friction are the main forces driving open channel flows. When using the shallow water model in hydraulic
simulation, these forces participate in the dynamic equation as sources/sinks of momentum. In cases of steady shallow water
flow with non-zero velocity, the discrete balance must be revisited [12].

George [7] presented a well balanced augmented approximate Riemann solver for the extended one dimensional shallow
water equations including in the original solution vector two new variables: momentum flux and bottom surface. The solver
is well-balanced and maintains a large class of steady states by the use of a properly defined steady state wave: a stationary
jump discontinuity in the Riemann solution that acts as a source term. The idea of a stationary jump discontinuity is adapted
to the method proposed in this work where the original system is not enlarged. without modifying the original solution
vector of conserved quantities (mass and momentum), we present augmented approximate Riemann solvers for the shallow
water equations in the presence of a variable bottom surface and friction. They belong to the class of simple approximate
solvers that use a set of propagating jump discontinuities, or waves, to approximate the true Riemann solution. Typically,
a simple solver for a system of m conservation laws uses msuch discontinuities. We present a three wave solver for the
1D shallow water equations system (two equations) and a four wave solver for the 2D case (three equations). In this
work we go back to the original ideas of Roe using the upwind discretization of the source terms proposed by Vázquez-
Cendón [20].

The outline of the paper is as follows: the one dimensional discretization is described first, for a scalar equation with
source terms in Section 2 and then, in Section 3, for the 1D shallow water equations, followed by its application to a selection
of results to show its accuracy. In Section 4 the generalization to two dimensions, illustrated using triangular grids, is
presented and again applied to the shallow water equations. The final section contains the conclusions derived from the
work.
2. One dimensional scalar Riemann problems with source terms

The basic ideas underlying this work can be illustrated by examining the nonlinear scalar equation,
@u
@t
þ @f ðuÞ

@x
¼ s; ð1Þ
where f(u) is a convex nonlinear function of u and s is a source term. From f(u) it is possible to find an advection, or transport
velocity k:
k ¼ df
du

k ¼ kðuÞ: ð2Þ
We are interested in weak solutions of the Riemann Problem (hereafter RP) defined by the initial condition
uðx;0Þ ¼
uL if x < 0;
uR if x > 0:

�
ð3Þ
This case corresponds to a RP with a source function.
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2.1. Numerical modelling

Weak solutions of the RP can be found using the integral form of (1). Given initial values uL;uR; a time interval [0,1] and a
space interval [�X,X] , with X sufficiently large, S < X, with S the position of the fastest wave at t = 1, the exact solution u at
time t = 1 satisfies the following conservation integral:
Z þX

�X
uðx;1Þdx ¼ XðuL þ uRÞ � ðf ðuRÞ � f ðuLÞÞ þ

Z 1

0

Z þX

�X
sdxdt: ð4Þ
In order to obtain a numerical solution of (1) the domain is divided in computational cells of constant size Dx: the interval of
the ith cell is defined by ½xi�1=2; xiþ1=2�. Let Dt be the time step and tn ¼ nDt a generic time level. Assuming the usual notation
we indicate with un

i the cell-average value of the solution uðx; tÞ for the ith cell at time tn:
un
i ¼

1
Dx

Z xiþ1=2

xi�1=2

uðx; tnÞdx; ð5Þ
un
i is therefore a piecewise approximation of the solution at time tn.

The first order Godunov method, updates the averaged quantities one time-step assuming the following piecewise con-
stant approximation,
uðx;0Þ ¼
ui if x < 0;
uiþ1 if x > 0;

�
ð6Þ
at each cell edge. The solution of the RP is evolved for a time equal to the time step and the resulting solution is cell-averaged
again obtaining the piecewise solution at the new time level tnþ1.

In the Roe approach, the solution of each RP is obtained from the exact solution of a locally linearized problem defined by
an approximate solution ûðx; tÞ. The approximate solution must fulfill the Consistency Condition [9] where the integral of the
approximate solution ûðx; tÞ of the linearized RP over a suitable control volume is equal to the integral of the exact solution
over the same control volume. In our case the control volume is characterized by the cell size, �Dx

2 ; Dx
2

� �
, leading to
Z Dx

2

�Dx
2

ûðx;1Þdx ¼ Dx ðuiþ1 þ uiÞ � ðf ðuiþ1Þ � f ðuiÞÞ þ
Z 1

0

Z Dx
2

�Dx
2

sdxdt: ð7Þ
Furthermore, as the source term s is not constant in time, we assume the following time linearization:
siþ1=2 ¼
Z Dx

2

�Dx
2

sðx;0Þdx: ð8Þ
Now, the Roe’s approximate solution is constructed defining the following linear RP:
@û
@t þ k�ðuiþ1;uiÞ @û

@x ¼ 0;

ûðx;0Þ ¼
ui if x < 0;
uiþ1 if x > 0;

� ð9Þ
where k�ðuiþ1;uiÞ is a constant. Integrating over the same control volume as in (7)
Z Dx
2

�Dx
2

ûðx;1Þdx ¼ Dxðuiþ1 þ uiÞ � k�iþ1=2ðuiþ1 � uiÞ: ð10Þ
Since we want to satisfy (7), the constraint that follows is:
ðdf � sÞiþ1=2 ¼ f ðuiþ1Þ � f ðuiÞ � siþ1=2 ¼ k�iþ1=2ðuiþ1 � uiÞ ð11Þ
leading to the following equality
k�iþ1=2 ¼ ~kiþ1=2 hiþ1=2; ð12Þ
with
~kiþ1=2 ¼
f ðuiþ1Þ � f ðuiÞ

uiþ1 � ui
; hiþ1=2 ¼ 1� siþ1=2

f ðuiþ1Þ � f ðuiÞ
; ð13Þ
where ~k is the advection velocity when the source term s is not present and h is a measure of the relative importance of the
source terms over the advective part.

2.1.1. A two wave approximate Riemann solution
A weak solution of the linear RP in (9) that satisfies (10) in the case ~kiþ1=2 > 0 is proposed:
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ûðx; tÞ ¼
ui if x < 0;
u��iþ1 if 0 < x < ~kiþ1=2 t;

uiþ1 if x > ~kiþ1=2 t;

8><>: ð14Þ
where one wave is associated to the celerity ~k and the other wave is steady and with
u��iþ1 ¼ uiþ1 � ðhduÞiþ1=2 ¼ ui þ
s
~k

� �
iþ1=2

: ð15Þ
Fig. 1 shows a sketch of the approximate solution in the particular case ~kiþ1=2 > 0;uiþ1 > ui and siþ1=2 < 0.
In case that ~kiþ1=2 < 0 the proposed solution is:
ûðx; tÞ ¼
ui if x < ~kiþ1=2 t;

u�i if ~kiþ1=2 t < x < 0;
uiþ1 if x > 0;

8><>: ð16Þ
with
u�i ¼ ui þ ðhduÞiþ1=2 ¼ uiþ1 �
s
~k

� �
iþ1=2

: ð17Þ
These solutions are then evolved for a time equal to the time step; the resulting solution is cell-averaged again obtaining the
piecewise solution at the new time level tnþ1. Assuming that ~ki�1=2 > 0 and ~kiþ1=2 < 0, the volume integral in the cell
½0;Dx� � ½0;Dt� represented in Fig. 2 is:
unþ1
i Dx ¼ u��i ð~ki�1=2DtÞ þ un

i ðDx� ~ki�1=2Dt þ ~kiþ1=2DtÞ � u�i ð~kiþ1=2DtÞ; ð18Þ
that can be rewritten as
Fig. 1. Approximate solution for ûðx; tÞ.

Fig. 2. Control volume in the Godunov method.
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unþ1
i ¼ un

i � ððduh~kÞi�1=2 þ ðduh~kÞiþ1=2Þ
Dt
Dx

: ð19Þ
In Fig. 2 the time step is taken small enough so that there is no interaction of waves from neighboring Riemann problems.
This would be necessary if we wanted to construct the solution at unþ1

i in order to explicitly calculate the cell average (18).
According to [9], in order to use the flux formula (19) it is only necessary that the edge value ûðx; tÞ remains constant in time
over the entire time step, which allows a time step roughly twice as large. Then, stability is ensured if the time step is limited
by:
Dt 6 Dt~k; Dt~k ¼ Dx

j~kj
ð20Þ
and the numerical scheme can be formulated in a general way as:
unþ1
i ¼ un

i � ððdf � sÞþi�1=2 þ ðdf � sÞ�iþ1=2Þ
Dt
Dx

;

ðdf � sÞ�iþ1=2 ¼ ~k�hdu
� �

iþ1=2
:

ð21Þ
Straightforward algebraic manipulation converts (21) to an equivalent numerical flux-based finite volume scheme [8],
unþ1
i ¼ un

i � f �iþ1=2 � f �i�1=2

� � Dt
Dx
þ s�iþ1=2 þ sþi�1=2

� � Dt
Dx

ð22Þ
in which the numerical flux (denoted by an asterisk) for first-order upwinding is given by
f �iþ1=2 ¼
1
2
ðfiþ1 þ fiÞ �

1
2
ðj~kjduÞiþ1=2; ð23Þ
with a similar expression for f �i�1=2, and
s�iþ1=2 ¼
1
2
ð1� sgnð~kÞÞiþ1=2siþ1=2: ð24Þ
These are essentially the two ways of extracting approximate information from the solution of the Riemann problem used in
Godunov-type methods: one approach is, following Godunov’s original method, to use the Riemann solutions to determine
cell intermediate fluxes at each time step as in (23); the other approach is based on the wave propagation algorithm in which
waves arising in Riemann solutions are directly re-averaged onto adjacent cells in order to update the numerical solution as
in (21). The second is applicable to equations in the form of a conservation law as well as those where there is not a flux
function (non-conservative equations). Therefore, it is the latter route the one we follow in this work together with the
new idea that the presence of the source term generates more than one intermediate state.

When un
i P 0 in all computational cells and positivity over the updated solutions is required, unþ1

i P 0, the limit for the
time step size in (20) is valid only if u�i > 0 and u��i > 0 is guaranteed. Otherwise, it is necessary to define additional restric-
tions over the cell average, isolating the contributions of each independent RP.

Then, with reference to Fig. 1, in the case u��iþ1 6 0 at a iþ 1=2 edge, the time step must be redefined ensuring positivity on
the cell average value in the control volume 0; 1

2 Dx
� �
ð~kiþ1=2DtÞu��iþ1 þ
1
2

Dx� ~kiþ1=2Dt
� �

un
iþ1 P 0 ð25Þ
leading to the following limit in the size of the time step
Dt 6 Dt��; Dt�� ¼ 1
2

Dxekiþ1=2

un
iþ1

un
iþ1 � u��iþ1

: ð26Þ
In case that u�iþ1 6 0 at a iþ 1=2 edge, the limit is given by:
Dt 6 Dt�; Dt� ¼ 1
2

Dx

j~k1
iþ1=2j

un
i

un
i � u�i

: ð27Þ
It is worth noting that if un
iþ1 ¼ 0 and u��i < 0 or if un

i ¼ 0 and u�i < 0 the time step becomes nil according to (26) and to (27)
respectively. Then, to ensure positivity of the solution in all cases the Godunov’s method for the scalar case is formulated as
follows:
unþ1
i ¼ un

i � ððdf � sÞþi�1=2 þ ðdf � sÞ�iþ1=2Þ
Dt
Dx

; ð28Þ
where the fluxes in a general intercell edge iþ 1=2 are computed as follows:

� If un
iþ1 ¼ 0 and u��iþ1 < 0 set:
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8
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ðdf � sÞ�iþ1=2 ¼ 0; ðdf � sÞþiþ1=2 ¼ 0: ð29Þ
� If un
i ¼ 0 and u�i < 0 set:
ðdf � sÞþiþ1=2 ¼ 0 ðdf � sÞ�iþ1=2 ¼ 0: ð30Þ
� Otherwise set:
ðdf � sÞ�iþ1=2 ¼ ð~k�hduÞiþ1=2; ð31Þ
with
~k�iþ1=2 ¼
1
2
ð~k� j~kjÞ: ð32Þ
In consequence the stability region becomes:
Dt 6 minðDt��;Dt�;Dt~kÞ; ð33Þ
where Dt�� is defined as in (26) if u��iþ1 < 0 and un
iþ1–0 and Dt� is defined as in (27) if u�i < 0 and un

i –0.
Depending on the particular approach chosen to discretize the integral source term siþ1=2 the numerical scheme provides

different solutions. The criterion to decide what is the best option for the source term discretization must be guided by the
knowledge of the weak solution properties. This will be illustrated later with examples.

2.2. Application to the Burgers’ equation with source terms

Consider Burgers’ equation including source terms as proposed in [11]:
@u
@t
þ 1

2
@u2

@x
¼ �u

@z
@x
; ð34Þ
with the initial data
uðx;0Þ ¼ uoðxÞ ¼
uL if x < 0;
uR if x > 0;

�
zðxÞ ¼

zL if x < 0;
zR if x > 0:

�
ð35Þ
The exact solution to this problem is provided in Appendix A.

2.2.1. Numerical tests. Source term integration
In this section several RP solutions for Eq. (34) will be studied, analysing the evolution of the solution depending on the

integration of the source term siþ1=2 in (8). The cases are summarized in Table 1. All cases are computed using Dx ¼ 1 and
CFL = 1. Numerical solutions will be performed using numerical schemes (22) and (28) and the following approximate celer-
ity ~k:
~kiþ1=2 ¼
ðuiþ1 þ uiÞ

2
: ð36Þ
Depending on the approach applied to integrate the discontinuous source term siþ1=2 different solutions appear. Their prop-
erties will be stated from comparison with known exact solutions in order to select the best option. Three approaches for
siþ1=2 will be checked. The first approach for siþ1=2; sa

iþ1=2, is constructed enforcing equilibrium in steady states:
sa
iþ1=2 ¼ �

1
2
ðuiþ1 þ uiÞðziþ1 � ziÞ: ð37Þ
Two alternative approximations that do not enforce discrete equilibrium are also defined for numerical discussion:
ry of test cases.

case uL uR zL zR uLf

2.0 1.0 0.0 0.5 1.5
2.0 1.0 0.0 �0.5 2.5
1.0 2.0 0.5 0.0 1.5
1.0 2.0 0.0 0.5 0.5
2.0 1.0 0.0 1.5 0.5
1.0 2.0 1.5 0.0 2.5
1.0 2.0 0.0 2.0 �1.0
2.0 0.0 0.0 2.5 �0.5
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sb
iþ1=2 ¼ �uiþ1ðziþ1 � ziÞ; sc

iþ1=2 ¼ �uiðziþ1 � ziÞ: ð38Þ
In test case 1 the exact solution is a right moving shock connecting uR with u� ¼ 1:5 with a celerity a = 1.25. Fig. 3(a) shows
the results given by the numerical scheme in (28) for approaches sa; sb and sc . Function sað� � �Þ provides an accurate value
for u�, while sbð� � �Þ and scð�M�Þ overestimates and underestimates its value respectively, leading to a wrong shock veloc-
ity. In test case 2 the solution is a right moving shock connecting uR with u� ¼ 2:5 with a celerity a = 1.75. Also the function sa

provides the best results, as depicted in Fig. 3(b). Approaches sb and sc lead to the same tendency as before.
Test cases 3 and 4 correspond to a right moving rarefaction wave. Fig. 4(a) and (b) shows the results at t = 15 given by the

numerical scheme in (28) for test cases 3 and 4, respectively, using the integral approach sa; sb and sc . Although the approx-
imate solution is constructed assuming only jumps, the rarefaction is satisfactorily computed when using approach sa in both
cases, while sbð� � �Þ and scð�M�Þ overestimates and underestimates the value of u�L respectively.

The good accordance among exact solutions and numerical results for approach sa can be explained attending to the result
given by the approximate linear obtained when using this option, as in in this case the value of u��iþ1 in (14) becomes
u��;aiþ1 ¼ ui � dz ð39Þ
equal to the analytical value for u� in the case of a shock wave (172) or equal to the analytical value for u�L in the case of a
rarefaction (178).

In test case 5, uL > uR, and for the homogeneous case, the solution is a shock wave. The presence of the source term leads
to a rarefaction characterized by a value of u�L ¼ 0:5. Fig. 5(a) shows the results at t = 15 using numerical scheme in (28), and
how approach sa accurately reproduces the rarefaction wave. When using the approach sc where the solution becomes a sta-
ble rarefaction, defined from an incorrect value of u�L ¼ u��;ciþ1 ¼ 0. If approach sbð� � �Þ is applied the initial solution becomes
steady, as uiþ1 ¼ u��;biþ1 . In absence of exact solutions this would lead to the misleading conclusion that the result given by ap-
proach sb would be correct and the integral approach would be retained as a well balanced one.
(a) Exact solution (—) and computed solutions at t = 15 for test case 1, and (b) exact solution and computed solutions at t = 15 for test case 2, using
hes sað� � �Þ; sbð� � �Þ and scð�M�Þ.

(a) Exact solution (—) and computed solutions at t = 15 for test case 3, and (b) exact solution and computed solutions at t = 15 for test case 4, using
hes sað� � �Þ; sbð� � �Þ and scð�M�Þ.



Fig. 5. (a) Exact solution (—) and computed solutions at t = 15 for test case 5, and (b) exact solution and computed solutions at t = 15 for test case 6, using
approaches sað� � �Þ; sbð� � �Þ and scð�M�Þ.

Fig. 6. (a) Exact solution (—) and computed solutions at t = 15 using numerical scheme (22), and (b) exact solution and computed solutions for numerical
scheme (28), at t = 15 for test case 7, using approaches sað� � �Þ; sbð� � �Þ and scð�M�Þ.
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The solution for test case 6 for the homogeneous case is a rarefaction wave, but the presence of the source term leads to a
shock wave, defined by u� ¼ 2:5 Fig. 5(b) shows the results at t = 15 for numerical scheme in (28). Integral approach sa pro-
vides the most accurate solution while the integral approach sb leads to an overestimation of u�L . If approach sc is applied the
initial solution becomes steady in time, as uiþ1 ¼ u��;ciþ1 . Again, in absence of analytical solutions, the result given by approach
sc may seem correct and would be retained as a well balanced approach.

In case 7, the initial conditions are defined to force null or negative values of ûðx; tÞ in the right side. The numerical solu-
tion must converge asymptotically to a stable rarefaction between u�L ¼ 0 and uR ¼ 2. When using numerical scheme in (22)
with approach sa, negative values of u appear, as depicted in Fig. 6(a). Only the solution for approach sb remains positive,
although an incorrect value of u�L is predicted. If, on the other hand, the scheme is carefully applied as in (28) the results im-
prove as shown in Fig. 6(b). In this case both integral approaches sa and sc provide accurate and similar results, recovering the
self-similarity of the problem. Approach sb provides the same results as before.

For test case 8 the right state uR is null, and the exact solution is a steady shock. If enforcing positivity over the solution,
must remain steady and equal to the initial state. Fig. 7(a) shows how when using numerical scheme in (21) approaches sa

and sc break the self similarity of the problem reaching negative values of u, while approach sb leads to a result that may
seem reasonable, a right moving wave, but incorrect. The results for the numerical scheme in (28) are depicted in
Fig. 7(b), showing how both integral approaches sa and sc retain correctly the initial state, while integral approach sb provides
the same incorrect results.

3. 1D Systems of conservation laws with source terms

The discussion is next extended to hyperbolic nonlinear systems of equations with source terms in 1D, that expressed in
integral formulation are:
@

@t

Z x2

x1

Udxþ Fjx2
� Fjx1 �

Z x2

x1

Sdx ¼ 0; ð40Þ



Fig. 7. (a) Exact solution (—) and computed solutions at t = 15 using numerical scheme (22), and (b) exact solution and computed solutions for numerical
scheme (28), at t = 15 for test case 8, using approaches sað� � �Þ; sbð� � �Þ and scð�M�Þ.
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where x1; x2 are the limits of a generic control volume. The differential formulation is obtained assuming smooth variation of
the variables and an infinitesimal width of the control volume:
@U
@t
þ @F
@x
¼ S ð41Þ
and from this formulation it is possible to define a Jacobian matrix for the convective part J
J ¼ dF
dU

: ð42Þ
Assuming that the convective part in (40) is strictly hyperbolic with two real eigenvalues k1; k2 and eigenvectors e1; e2, it is
possible define two matrices P ¼ ðe1; e2Þ and P�1 with the property that they diagonalize the Jacobian J
J ¼ PKP�1: ð43Þ
3.1. Approximate solution of the Riemann problem

Given a Riemann problem for (41) with initial values UL;UR, a time interval [0,1] and a space interval [�X,X] , where
�X 6 kmin; X P kmax ð44Þ
and kmin; kmax are the positions of the slowest and the fastest wave at t = 1, the solution U at time t = 1 satisfies the following
property:
Z þX

�X
Uðx;1Þ dx ¼ XðUR þ ULÞ � ðFðURÞ � FðULÞÞ þ

Z 1

0

Z þX

�X
S dx dt: ð45Þ
In order to obtain a numerical solution of system (41) we divide the domain in computational cells of constant size Dx: the
interval of the ith cell is defined by ½xi�1=2; xiþ1=2� where xiþ1=2 ¼ iDx and the position of the center of the cell xi is defined by
ði� 1=2ÞDx. Let Dt be the time step and tn ¼ nDt a generic time; assuming the usual notation we indicate with Un

i the cell-
average value of the solution Uðx; tÞ for the ith cell at time tn:
Un
i ¼

1
Dx

Z xiþ1=2

xi�1=2

Uðx; tnÞdx: ð46Þ
Un
i is therefore a piecewise constant approximation of the solution at time tn. The first order Godunov method, provides a

way to update the averaged quantities one time-step in the following way: the piecewise approximations (46), are consid-
ered as initial values of local RPs:
@U
@t þ @F

@x ðUi;Uiþ1Þ ¼ SðUi;Uiþ1Þ;

Uðx;0Þ ¼
Ui if x < 0;
Uiþ1 if x > 0:

� ð47Þ
These RP solutions are then evolved for a time equal to the time step; the resulting solution is cell-averaged again obtaining
the piecewise solution at the new time level tnþ1. In the Roe approach, the solution of each RP is obtained from the exact
solution of a locally linearized problem. This solution must fulfill the so called Consistency Condition, i.e. that the integral



4336 J. Murillo, P. García-Navarro / Journal of Computational Physics 229 (2010) 4327–4368
of the solution bUðx; tÞ of the linearized RP over a suitable control volume must be equal to the integral of the exact solution of
(47) over the same control volume. Using (45) this condition becomes:
Z þX

�X

bUðx;1Þ dx ¼ XðUiþ1 þ UiÞ � ðFðUiþ1Þ � FðUiÞÞ þ
Z 1

0

Z þX

�X
S dx dt: ð48Þ
Since the source term is not necessarily constant in time, we assume the following time linearization of the Consistency
Condition:
Z þX

�X

bUðx;1Þ dx ¼ XðUiþ1 þ UiÞ � ðFðUiþ1Þ � FðUiÞ � Siþ1=2Þ; ð49Þ
where
Siþ1=2 ¼
Z þX

�X
Sðx;0Þ dx ð50Þ
is a suitable numerical source vector.
In this formulation, RP (47) is approximated by using the following linear RP:
@bU
@t þ J� @bU

@x ¼ 0;

bUðx; 0Þ ¼ Ui if x < 0;
Uiþ1 if x > 0;

� ð51Þ
where J�ðUi;Uiþ1Þ is a constant matrix. Integrating (51) over the control volume [�X,X] � [0,1] , where X satisfies (44):
Z þX

�X

bUðx;1Þ dx ¼ XðUiþ1 þ UiÞ � J�ðUi;Uiþ1Þ ðUiþ1 � UiÞ: ð52Þ
Since we want to satisfy (49), the constraint that follows is:
dFiþ1=2 � Siþ1=2 ¼ J�iþ1=2dUiþ1=2; ð53Þ
with dFiþ1=2 ¼ FðUiþ1Þ � FðUiÞ and dUiþ1=2 ¼ Uiþ1 � Ui Moreover, two more conditions are standard requirements for the Roe
method.
J�iþ1=2ðUiþ1;UiÞ; is diagonalizable with real eigenvalues

J�iþ1=2ðUiþ1;UiÞ ! J�iþ1=2ðUiÞ smoothly as Uiþ1 ! Ui
ð54Þ
Considering that it is possible to define an approximate Jacobian eJiþ1=2 for the homogeneous part, characterized by a set of
approximate eigenvalues ~k1; ~k2 and eigenvectors ~e1; ~e2, two approximate matrices, eP ¼ ð~e1; ~e2Þ and eP�1 are built with the fol-
lowing property:
eJiþ1=2 ¼ ePiþ1=2

eKiþ1=2
eP�1

iþ1=2: ð55Þ
The difference in vector U across the grid edge is projected onto the matrix eigenvectors basis and the same for the source
term:
dUiþ1=2 ¼ ePiþ1=2Aiþ1=2; Siþ1=2 ¼ ePiþ1=2Biþ1=2 ð56Þ
with Aiþ1=2 ¼ a1 a2
	 
T

iþ1=2and Biþ1=2 ¼ b1 b2
	 
T

iþ1=2. Expressing all terms more compactly:
dFiþ1=2 � Siþ1=2 ¼
XNk

m¼1

ð~k�a~eÞmiþ1=2; ð57Þ
where
~k�;miþ1=2 ¼ ~km
iþ1=2h

m
iþ1=2; hm

iþ1=2 ¼ 1� b
~ka

� �m

iþ1=2
; ð58Þ
so that the desired matrix in (52) is
J�iþ1=2 ¼ ðeP eK�eP�1Þiþ1=2; ð59Þ
with eK� ¼ eKH, where eKiþ1=2is a diagonal matrix with eigenvalues ekm
iþ1=2 in the main diagonal:
eKiþ1=2 ¼
ek1 0
0 ek2

 !
iþ1=2

ð60Þ
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and Hiþ1=2 is a diagonal matrix with hm
iþ1=2 in the main diagonal:
Hiþ1=2 ¼
h1 0
0 h2

 !
iþ1=2

: ð61Þ
3.2. Application to the 1D shallow water equations

For the 1D shallow water equations the relevant integral formulation in (40) derives from the depth-averaged equations
of mass conservation and of momentum, with
U ¼
h

hu

� �
; F ¼

hu

hu2 þ 1
2 gh2

 !
; S ¼

0
pb
qw
� sb

qw

 !
; ð62Þ
where h represents the water depth, u the depth averaged component of the velocity vector and g is the acceleration of the
gravity. The source term of the system is split in two kind of terms. The terms pb and sbare the pressure along the bottom and
the shear stress in the x direction respectively, with qw the density of water. The above formulation is written in terms of the
unit discharge and not valid for arbitrary cross sections. In order to extend the following discussion to general 1D problems
[5] should be followed.

The convective part in (40) leads to two real eigenvalues k1; k2 and eigenvectors e1; e2,
k1 ¼ u� c; k2 ¼ uþ c;

e1 ¼
1

u� c

� �
; e2 ¼

1
uþ c

� �
;

ð63Þ
with c ¼
ffiffiffiffiffiffi
gh

p
. Regarding the source term the following differential equation for the bottom slope can be obtained:
pb

qw
¼ �gh

@z
@x

ð64Þ
The approximate Jacobian eJ for the homogeneous part [14] is
eJiþ1=2 ¼
0 1

~c2 � ~u2 2~u

� �
iþ1=2

; dFiþ1=2 ¼ eJiþ1=2dUiþ1=2 ð65Þ
with
~c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

hi þ hiþ1

2

r
; ~u ¼ uiþ1

ffiffiffiffiffiffiffiffiffi
hiþ1

p
þ ui

ffiffiffiffi
hi

pffiffiffiffiffiffiffiffiffi
hiþ1

p
þ

ffiffiffiffi
hi

p ð66Þ
and the resulting set of approximate eigenvalues and eigenvectors are
~k1 ¼ ~u� ~c; ~k2 ¼ ~uþ ~c;

~e1 ¼
1

~u� ~c

� �
; ~e2 ¼

1
~uþ ~c

� �
:

ð67Þ
3.2.1. A three wave approximate Riemann solution
Depending on the flow conditions, three approximate solutions that satisfy (49), are proposed. The solutions for bUðx; tÞ are

governed by the celerities in eKiþ1=2 and each one consists of four regions.
The details of the apprimate Riemann solution for each case are provided in Appendix B.
Following Godunov’s method these RP solutions are then evolved for a time equal to the time step, the resulting solution

is cell-averaged obtaining the piecewise solution at the new time level tnþ1. If both i and i+1 are subcritical, the integral vol-
ume in cell ½0;Dx� � ½0;Dt� is depicted in Fig. 8. Focusing on the updating rule for cell i:
Unþ1
i Dx ¼ U��i ~k2

i�1=2Dt
� �

þ Un
i Dx� ~k2

i�1=2Dt þ ~k1
iþ1=2Dt

� �
þ U�i �~k1

iþ1=2Dt
� �

; ð68Þ
that can be rewritten as
Unþ1
i Dx ¼ Un

i ðDxÞ þ U��i � Un
i

	 

~k2

i�1=2Dt
� �

þ Un
i � U�i

	 

~k1

iþ1=2Dt
� �

ð69Þ
and considering (183) the updated value Unþ1
i is:
Unþ1
i ¼ Un

i � ðha~e~kÞ2i�1=2
Dt
Dx
� ðha~e~kÞ1iþ1=2

Dt
Dx

: ð70Þ
Straightforward algebraic manipulation converts (69) to an equivalent numerical flux-based finite volume scheme [8],



Fig. 8. Control volume in the Godunov method.
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Unþ1
i ¼ Un

i � F�iþ1=2 � F�i�1=2

� � Dt
Dx
þ S�iþ1=2 þ Sþi�1=2

� � Dt
Dx

ð71Þ
in which the numerical flux (denoted by an asterisk) for first-order upwinding is given by
F�iþ1=2 ¼
1
2
ðFiþ1 þ FiÞ �

1
2
ðPjeKjP�1dUÞiþ1=2; ð72Þ
with a similar expression for F�i�1=2 and
S�iþ1=2 ¼ ðPI�P�1SÞiþ1=2 ð73Þ
and I� ¼ K�1 1
2 ðK� jKjÞ.

In Fig. 8 the time step is small enough so that there is no interaction of waves from neighboring Riemann problems. This
would be necessary if we wanted to construct the solution at Unþ1

i in order to explicitly calculate the cell average (68). If
positivity of all water depth values in the solutions is guaranteed, h��i P 0 and h�iþ1 P 0, according to [9], in order to use
the flux formula (70) it is only necessary that the edge values bUðx; tÞ remain constant in time over the entire time step, which
allows a time step roughly twice as large and the time step is limited by
Dt 6 Dt~k; Dt~k ¼ Dx

max
m¼1;2

j~kmj
: ð74Þ
As the cell average is constructed averaging with the terms U��i and U�iþ1, the appearance of negative values of h��i and h�iþ1

must be considered. Fig. 9 represents a case with a negative value of h��iþ1 at a iþ 1=2 edge, where the flow is locally subcrit-
ical as in (182). As the approximate solutions used in each RP are independent, it is necessary to define the time step ensur-
ing that the cell average value in the control volume 0; 1

2 Dx
� �

remains positive
hnþ1
iþ1

1
2

Dx ¼ h��iþ1
~k2

iþ1=2Dt
� �

þ hn
iþ1

1
2

Dx� ~k2
iþ1=2

� �
Dt P 0 ð75Þ
leading to the following limit in the size of the time step
Fig. 9. Solution bUðx; tÞ.
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Dt 6 Dt��; Dt�� ¼ 1
2

Dx
~k2

iþ1=2

hn
iþ1

hn
iþ1 � h��iþ1

ð76Þ
or in the case h�i < 0
Dt 6 Dt�; Dt� ¼ 1
2

Dx
~k1

iþ1=2

hn
i

hn
i � h�i

: ð77Þ
One case of special interest are wet/dry interfaces with discontinuous bed level, as it is possible to generate negative water
depths in the initially dry region of widehatUðx; tÞ. According to (76) or (77) the time step becomes nil in that case. To ensure
positivity and conservation of the solution for all cases the Godunov’s method is formulated as follows:
Unþ1
i ¼ Un

i � ðdF� SÞþi�1=2 þ ðdF� SÞ�iþ1=2

� � Dt
Dx

; ð78Þ
where the fluxes in a general intercell edge iþ 1=2 are computed as follows:

� If hn
iþ1 ¼ 0 and h��iþ1 < 0 set:
ðdF� SÞ�iþ1=2 ¼ ðdF� SÞiþ1=2; ðdF� SÞþiþ1=2 ¼ 0: ð79Þ
� If hn
i ¼ 0 and h�i < 0 set:
ðdF� SÞþiþ1=2 ¼ ðdF� SÞiþ1=2; ðdF� SÞ�iþ1=2 ¼ 0: ð80Þ
� Otherwise set:
ðdF� SÞ�iþ1=2 ¼
XNk

m¼1

ð~k�ha~eÞmiþ1=2; ð81Þ
with
~k�;miþ1=2 ¼
1
2
ð~k� j~kjÞ: ð82Þ
The two main ways of formulating the Godunov type numerical solution for a system are then presented as it was done
before for the scalar case. Note that because the numerical source integral cannot, in general, be written as a difference, it is
not possible to include it in the numerical flux difference formulation (71). This means that the balance sought between flux
derivatives and sources in the numerical flux based scheme can only be achieved locally by balancing non-zero fluxes
through the edges of the control volume instead of setting every component to zero as in (78).

When in supercritical conditions values of h�i < 0 or h��iþ1 < 0 appear, the cell averaging in the Godunov method avoids
negative values of h, as the source term does not participate in the updating of the water depth. In consequence, the stability
region becomes:
Dt 6
minðDt��;Dt�;Dt~kÞ if ð~k1~k2Þiþ1=2 < 0;

Dt~k otherwise;

(
ð83Þ
where Dt�� is defined as in (76) if h��iþ1 < 0 and hn
iþ1–0 and Dt� is defined as in (77) if h�i < 0 and hn

i –0.
One result of Roe’s linearization is that the resulting approximate Riemann solution consists of only discontinuities andbUðx; tÞ is constructed as a sum of jumps or shocks. To avoid unphysical results the version of the Harten–Hyman entropy fix

[18] is used. In the case of left transonic rarefaction k1
i < 0 < k1

iþ1, with ki ¼ kðUiÞ and kiþ1 ¼ kðUiþ1Þ, the jump associated to
~k1

iþ1=2 is decomposed into two new jumps,
�k1 ¼ k1
i

k1
iþ1 � ~k1

� �
k1

iþ1 � k1
i

	 
 ; k̂1 ¼ k1
iþ1

ek1 � k1
i

� �
k1

iþ1 � k1
i

	 
 ; ð84Þ
with �k1 þ bk1 ¼ ek1, and �k1 < 0 and bk1 > 0 by definition.
This idea can be applied to the decomposition of the source term associated to b1 into two new values, �b1 and bb1. Their

definition has to be done enforcing a conservative splitting of the source terms, �b1 þ bb1 ¼ b1. Numerically it is possible to
force a splitting proportional to the one performed on the ~k1

iþ1=2 wave, that is
�b1 ¼ b1
�k1

~k1
; b̂1 ¼ b1 k̂1

~k1
ð85Þ
but this option results in erroneous results and in a reduction of the time step size, as the values of �b1 and b̂1 as defined in
(85) are much greater than the original one, b1, as under these conditions ~k1 is a travelling wave with almost nil velocity. The
option used in this work is
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�b1 ¼ b1; b̂1 ¼ 0; ð86Þ
that preserves the stability region in (83), simply replacing ~k1
iþ1=2 by �k1

iþ1=2.
For a right transonic rarefaction k2

i < 0 < k2
iþ1, the entropy fix procedure is entirely analogous to the left rarefaction case.

The single jump in ~k2 is split into two smaller jumps �k2 and k̂2
�k2 ¼ k2
iþ1
ð~k2 � k2

i Þ
k2

iþ1 � k2
i

	 
 ; k̂2 ¼ k2
i

k2
iþ1 � ~k2

� �
k2

iþ1 � k2
i

	 
 ; ð87Þ
with �k2 > 0 and k̂2 < 0 by definition. The source term is split enforcing
b2 ¼ b2; �b2 ¼ 0; ð88Þ
so the stability region in (83) is preserved, simply replacing ~k2
iþ1=2 by �k2

iþ1=2.

3.3. Integration of the source term

The source term in (50) is expressed as
Siþ1=2 ¼
0

pb
qw
� sb

qw

 !
iþ1=2

; ð89Þ
where pb
qw

and sb
qw

attend to the pressure and friction exerted on the bed respectively.
There is not a unique way to perform the numerical integral of the source term in (50). Under the hypothesis of smooth

variation of the variables and an infinitesimal width of the control volume, it is possible to define the integral in (50) eval-
uating pb

qw
as
pb

qw

� �a

iþ1=2
¼ �gð~hdzÞiþ1=2; ð90Þ
with ~h ¼ 1=2ðhi þ hiþ1Þ. Assuming a piecewise representation of the bed level, another possibility is to use the physical def-
inition of the hydrostatic force exerted over the bed discontinuity so the pressure head depends only on the free-surface le-
vel. Attending to this definition, (50) is defined using the following approach for pb

qw
:

pb

qw

� �b

iþ1=2
¼ �g hj �

jdz0j
2

� �
dz0; ð91Þ
with
j ¼
i if dz P 0;
iþ 1 if dz < 0;

�
dz0 ¼

hi if dz P 0 and di < ziþ1;

hiþ1 if dz < 0 and diþ1 < zi;

dz otherwise;

8><>: ð92Þ
where d ¼ ðhþ zÞ. Both approaches can be blended to provide another expression for the thrust term, that we will refer to as
pb
qw

� �c
:

pb

qw

� �c

iþ1=2
¼

max pb
qw

� �a
; pb

qw

� �b
� �

iþ1=2
if dd dz P 0 and ~udz > 0;

pb
qw

� �b

iþ1=2
otherwise;

8>>><>>>: ð93Þ
that considers the problems associated to flow across an upward step in overtopping waves.
In cases of still water with a continuous water level surface all three approximations of the trust term, a, b and c, provide

correct solutions for all values when constructing the approximate solution bUðx; tÞ, as in this particular case, Fig. 10:
hn
i þ zi ¼ h�i þ zi ¼ h��iþ1 þ ziþ1 ¼ hn

iþ1 þ ziþ1;

ðhuÞni ¼ ðhuÞ�i ¼ ðhuÞ��iþ1 ¼ ðhuÞniþ1 ¼ 0:
ð94Þ
This is a particular case, and in cases of nonzero velocity, differences among the solutions provided by the source term inte-
gral in ðpb=qwÞ

a
; ðpb=qwÞ

b and ðpb=qwÞ
c arise. One consequence of utmost importance is that they can generate negative val-

ues of water depth in the inner regions of the weak solution. In wetting/drying fronts negative values can be avoided if in
each iþ 1=2 edge with discontinuous water level surface, characterized by
hn
i þ zi < ziþ1; hn

iþ1 ¼ 0 ð95Þ
or



Fig. 10. Solution bUðx; tÞ in case of static equilibrium.
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hn
iþ1 þ ziþ1 < zi; hn

i ¼ 0; ð96Þ
a zero velocity in the involved cells is enforced, un
iþ1 ¼ un

i ¼ 0, in combination with approach ðpb=qwÞ
c . This procedure, that

considers the cell edges characterized by (95) or (96) as solid walls, will be referred to as approach ðpb=qwÞ
c;w.

Regarding the friction term, the discretization based on [12] is applied
sb

qwf ;iþ1=2
¼ gð~hSf Þiþ1=2Dx; Sf ;iþ1=2 ¼

n2~uj~uj
maxðhi;hiþ1Þ4=3

 !
iþ1=2

: ð97Þ
The importance of the discrete equilibrium in cases of still water to provide well-balanced schemes has been widely re-
ported, but it is important to stress that with the unified formulation of the source terms, the scheme becomes well balanced
in steady cases with no null velocity. According to numerical scheme (78), the stationary solution is reached when all updat-
ing components of the linearized solution become nil, that is ðhaÞmiþ1=2 ¼ 0 for m = 1, 2, leading to a constant discharge in all
zones of the weak solution. In the subcritical case:
ðhuÞni ¼ ðhuÞ�i ¼ ðhuÞ��iþ1 ¼ ðhuÞniþ1–0; ð98Þ
or in the supercritical case, with u > 0:
ðhuÞni ¼ ðhuÞ�iþ1 ¼ ðhuÞ��iþ1 ¼ ðhuÞniþ1–0: ð99Þ
3.4. Reconstruction of the approximate solution bUðx; tÞ
The linearization of the source terms leads to extremely small values of the allowable time step, as Dt�� or Dt� can be var-

ious order of magnitude smaller than Dt~k. This can be avoided by means of a reconstruction of the approximate solutionbUðx; tÞ. The strategy proposed here is based on enforcing positive values of h�i and h��iþ1 when they become negative. Consid-
ering that ~e1

1 ¼ 1, positive values of h�i require that
h�i ¼ hn
i þ a1

iþ1=2 �
b
~k

� �1

iþ1=2
P 0 ð100Þ
leading to the following limit over b1
b1
iþ1=2 P b1

min; b1
min ¼ � hn

i þ a1
iþ1=2

� �
j~k1

iþ1=2j: ð101Þ
Considering that ~e2
1 ¼ 1, positive values of h��iþ1 require that
h��iþ1 ¼ hn
iþ1 � a2

iþ1=2 þ
b
~k

� �2

iþ1=2
P 0 ð102Þ
and a limit over b2 appears
b2
iþ1=2 P b2

min; b2
min ¼ � hn

iþ1 � ðaÞ
2
iþ1=2

� �
~k2

iþ1=2: ð103Þ
The reconstruction proposed in this work will be applied only to subcritical wet/wet RP, as in dry/wet RP the appearance of
negative values of h�i or h��iþ1 in the approximate solution is helpful to provide a correct tracking of the flooding advance, and in
supercritical cases the cell averaging of the weak solutions ensures positivity of the solution. Also cases where both h�i < 0
and h��iþ1 < 0 are omitted.
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In the case h�i < 0 and h��iþ1 > 0 and Dt� < Dt~k, the new value of b1 is redefined ensuring that h��iþ1 remains positive or null.
To ensure conservation b2 must be replaced by the new value of �b1, then
Fig. 1
ðpb=qwÞ
b1 ¼ b1
min if � b1

min P b2
min

b1 otherwise

(
; b2 ¼ �b1: ð104Þ
In the case h�i > 0 and h��iþ1 < 0 and Dt�� < Dt~k, the new value of b2 is redefined ensuring that h�i remains positive or null. To
ensure conservation b1 must be replaced by the new value of �b2, then
b2 ¼ b2
min if � b2

min P b1
min;

b2 otherwise;

(
b1 ¼ �b2: ð105Þ
3.5. Dam break test cases

In this section we present comparisons among exact solutions of the Riemann problem for system (40), neglecting fric-
tion, and numerical solutions. The exact solution corresponding to a frictionless dambreak flow over a discontinuous bed is
detailed in Appendix C. The results are presented in the form of plots of the total depth, mean discharge, Froude number and
energy per unit weight or head. The examples are chosen to represent different combinations of wave patterns. The accel-
eration due to gravity is set equal to g = 9.8 m2/s. In all cases the bottom step is positioned at x = 0 and has a variable height.
In all cases Dx ¼ 1 and CFL = 1. When applying the reconstruction technique of the weak solution proposed in (104) and
(105) no difference in the solution has been observed when comparing with the original solution.

Test case 1 is a dam-break type problem, with a combination of rarefaction and shock waves. The initial condition consists
of two columns of water of different height and zero velocity. The solution, presented in Fig. 11 , contains a left moving rar-
efaction wave, a stationary shock at the step and a right-moving shock wave. The presence of the step leads to a reduction of
the total water height running to the right as compared to the flat bottom case. This reduction is due to the stationary shock,
which dissipates part of the energy of the shock wave. All three approximations of the pressure term, ðpb=qwÞ

a
; ðpb=qwÞ

b and
ðpb=qwÞ

c , provide results of similar accuracy, for the total depth, mean velocity, Froude number and energy. The options
ðpb=qwÞ

b and ðpb=qwÞ
c in particular overlap completely so that they cannot be distinguished in the plot. The position of
1. Test case 1: comparison between exact (—) and numerical solutions at t = 5 s obtained with approaches ðpb=qwÞ
að� � �Þ;

bð� � �Þ and ðpb=qwÞ
cð�M�Þ.



the fan expansion and the shock are correct and the discharge does not present oscillations in the origin. The correct behavior
of the numerical scheme is explained attending to the characteristics of the weak solution, that in a subcritical case, provides
a constant value of discharge for the two inner regions U�i and U��iþ1, according to the exact solution (see Table 2).

Test case 2 is also a dam-break type problem, with a combination of rarefaction and shock waves. The initial condition
consists of two columns of water of different heights and velocity on the left side. The solution, presented in Fig. 12, contains
a left moving rarefaction wave, a stationary shock at the step and a right-moving shock wave. The numerical solution for
approximation ðpb=qwÞ

a differs strongly from the analytical solution for all the plotted variables, and also provides an incre-
ment of the total water height. Approximations of the pressure term, ðpb=qwÞ

b and ðpb=qwÞ
c , provide the same results, leading

to a correct description of the total depth, the mean discharge, Froude number and compute the energy dissipation correctly.
Test case 3 is a two shock case with a convergent flow. The solution is presented in Fig. 13, and contains a left-moving

shock, a stationary shock at the step and a right-moving shock wave. As in the previous example, the step acts as an energy
dissipation mechanism. All three approximations of the pressure term, ðpb=qwÞ

a
; ðpb=qwÞ

b and ðpb=qwÞ
c , provide results of

similar accuracy, for the total depth, mean discharge and Froude number, as this case corresponds to a relatively mild slope.
Table 2
Summary of test cases.

Test case hL hR uL uR zL zR

1 1.0 0.30179953 0.0 0.0 0.0 0.05
2 4.0 0.50537954 0.1 0.0 0.0 1.5
3 2.5 2.49977381 1.5 0.0 0.0 0.25
4 1.5 0.16664757 2.0 0.0 0.0 2.0
5 1.0 0.04112267 0.2 0.0 0.25 0.0
6 0.6 0.02599708 0.35 0.0 1.2 0.0
7 1.1 0.49457729 4.9 6.50 0.2 0.0
8 1.5 0.0 2.2862 0.0 0.0 4.0
9 1.5 0.0 4.5 0.0 0.0 4.0
10 1.5 0.0 �2.5 0.0 0.0 1.0
11 1.5 0.0 �5.0 0.0 0.0 1.0



Fig. 13. Test case 3: comparison between exact (—) and numerical solutions at t = 5 s obtained with approaches ðpb=qwÞ
að� � �Þ; ðpb=qwÞ

b

ð� � �Þ and ðpb=qwÞ
cð�M�Þ.
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The strongest differences appear in the total water height, with ðpb=qwÞ
b and ðpb=qwÞ

c providing the most energy dissipative
solutions.

Test case 4 is also a two shock case with a convergent flow, with an initial discontinuity in the water depth. The perfor-
mance of the numerical scheme in cases with this type of discontinuity is of major importance in practice. As in test case 3,
the solution, depicted in Fig. 14, contains a left-moving shock, a stationary shock at the step and a right-moving shock wave.
All solutions provide an adequate description of the water discharge at the dam break position, x = 0 m, but the differences
among the results for the rest of variables are noticeable. Approach ðpb=qwÞ

a lead to unphysical result for the total water
height, while approach ðpb=qwÞ

b, strongly overestimates the velocity of the right moving shock and underestimates the
velocity of the left moving shock. The hybrid option ðpb=qwÞ

c combines the best properties of both approaches leading to
superior results, not only providing an energy dissipating solution but also reaching better results for the rest of variables.
The differences with the exact solution are attributable to the linearization of the source term when constructing the weak
solution.

Test case 5 is a dam-break type problem, with a combination of rarefaction and shock waves, but in contrast with test
cases 1 and 2, the initial condition consists of two columns of water of different heights, velocity in the left side and a back-
ward step of height similar to the right column of water. The solution, presented in Fig. 15, contains a left moving rarefaction
wave, a stationary shock at the step and a right-moving shock wave. The presence of the step dissipates part of the energy.
Approximations of the pressure term ðpb=qwÞ

b and ðpb=qwÞ
c , that provide identical results, lead to a description of the total

depth, the mean discharge, Froude number and compute the energy dissipation closer to the exact solution. Again, the dif-
ferences still shown by approaches ðpb=qwÞ

b and ðpb=qwÞ
c with respect to the exact solution are attributable to the lineari-

zation of the source term when constructing the weak solution. Test case 6 is similar to test case 5, but with a stronger
discontinuity in the water elevation, and a very thin layer of water 0n the right side. The solution is presented in Fig. 16. Only
approximations of the pressure term ðpb=qwÞ

b and ðpb=qwÞ
c , that provide identical results, lead to a correct description of the

total depth, the mean discharge, Froude number and compute the energy dissipation. Approach ðpb=qwÞ
a, provides a solution

totally inadequate and distorted if compared with the analytical case.
In test case 7 a supercritical motion from left to right is considered. The presence of the step introduces no limitation in

the signal propagation upstream, and its effect is in dissipating energy by the stationary shock at the step. The solution, pre-
sented in Fig. 17, contains a stationary shock at the step, a right moving rarefaction wave, and a right-moving shock wave.
Only approximations of the pressure term ðpb=qwÞ

b and ðpb=qwÞ
c , that provide identical results, lead to a correct description



Fig. 14. Test case 4: comparison between exact (—) and numerical solutions at t = 5 s obtained with approaches ðpb=qwÞ
að� � �Þ; ðpb=qwÞ

b
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of the total depth, the mean discharge, Froude number and compute the energy dissipation correctly. Approach ðpb=qwÞ
a,

provides an unphysical solution for the total water height. For all approaches the computed discharge is kept constant
and equal to the left value, ðhuÞL, until the solution reaches the rarefaction wave. This is explained attending to the definition
of the weak solution for supercritical cases in (185), that provides an adequate value for the inner region, resulting in
ðhuÞni ¼ ðhuÞ�iþ1 according to the exact solution.

In test cases 8–11 the performance of the numerical scheme in RPs characterized by a fixed in time wet/dry position are
analysed. Depending on the approach of the source term the flow develops in both regions of the plain. This is avoided if the
weak solution provides null or negative values of water depth in the initially dry side of the RP. In this context, the perfor-
mance of the energy dissipative approach ðpb=qwÞ

c;w is of interest.
In test case 8 a subcritical flow encounters a wall and is reflected. The solution, presented in Fig. 18, contains a left-mov-

ing shock that links the right moving water with a region of still water ending at the stationary shock at x = 0. The bed ele-
vation on the right side is greater than the maximum allowable water depth in the wet region at rest. Only approximations of
the pressure term ðpb=qwÞ

a
; ðpb=qwÞ

c and ðpb=qwÞ
c;w provide a correct solution in the left side, while ðpb=qwÞ

b, develops in
both sides leading to incorrect solutions. Option ðpb=qwÞ

c;w provides more accurate results for both water depth and flow dis-
charge. The same results are observed for test case 9, Fig. 19, where a supercritical flow encounters a wall and is reflected.

In test case 10 a subcritical flow moving to the left generates a left moving rarefaction connecting the left state with a
state of water at rest, with a water depth smaller than the depth of the wall defined in the other side. The solution is pre-
sented in Figs. 20 and 21. Approximations of the pressure term ðpb=qwÞ

a and ðpb=qwÞ
c develop correctly in the left side of the

(x,t) plane, although present an oscillatory behavior in the zero velocity region. The results for approach ðpb=qwÞ
c;w do not

present any oscillation in the region of zero velocity but estimate less accurately the velocities at the tail and the head of
the rarefaction. Again ðpb=qwÞ

b provides an incorrect solution.
The situation is much more interesting in test case 11, where supercritical flow conditions are enforced in the left side.

Again ðpb=qwÞ
b provides an incorrect solution and ðpb=qwÞ

a
; ðpb=qwÞ

c lead to similar results. Results given by approach
ðpb=qwÞ

c;w follow the same tendency as in test case 10.
According to the hypothesis assumed to derive the exact solution, the solutions in test cases 8–11 should be independent

of the actual height of the dry step zR. That is, if the value of the dry bed level zR decreases until a value equal to the water
depth in the region of zero velocity, that will be referred to as hL;0, the solution remains equal. However, due to the approx-
imation used to define the bed discontinuity, this has an influence, and before zR reaches the limit hL;0, numerical solutions





Fig. 16. Test case 6: comparison between exact (—) and numerical solutions at t = 5 s obtained with approaches ðpb=qwÞ
að� � �Þ; ðpb=qwÞ

b

ð� � �Þ and ðpb=qwÞ
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the ending of the flat bed, and how this difference is more noticeable at time t ¼ 55 s, as depicted in Fig. 23(e). Also, less
oscillatory results for the water discharge are computed in the same location, as seen in Fig. 23(d) for t = 50 s and (f)
t = 55 s. Almost unnoticeable differences appear in the advancing front.

Fig. 24 shows that, when both approximate solutions begin to diverge, the time step size also does so. For times approx-
imately between t = 45 and t = 50 s, smaller values of time step are required for the original weak solution if compared with
the ones required by the modified solution. For longer times, the time step for the original weak solution becomes several
orders of magnitude smaller than the time step for the reconstructed solution, as the source terms influence the stability
region, rendering the simulation of longer times than t = 55 impossible. On the other hand, the reconstructed solution allows
a time step size of constant order of magnitude.

In the previous section approach ðpb=qwÞ
c;w lead to accurate results for reflection waves and rarefactions in stationary

wet/dry problems. Fig. 23 shows the results given by the energy dissipative approach ðpb=qwÞ
c;w compared with those given

by approach ðpb=qwÞ
c . As expected, the main difference appears in the velocity of the advancing front.
4. 2D systems of equations with source terms

The previous ideas are next extended to 2D hyperbolic nonlinear systems of equations with source terms of the form
@U
@t
þ @FðUÞ

@x
þ @GðUÞ

@y
¼ SðU;x; yÞ: ð107Þ
System (107) is time dependent, nonlinear, and contains source terms. Under the hypothesis of dominant advection it can be
classified and numerically dealt with as belonging to the family of hyperbolic systems. The mathematical properties of (107)
include the existence of a Jacobian matrix, Jn, of the flux normal to a direction given by the unit vector n, En, with
E ¼ Fnx þ Gny, defined as
Jn ¼
@En
@U
¼ @F
@U

nx þ
@G
@U

ny: ð108Þ
This Jacobian can be used to form the basis of the upwind numerical discretization that will be outlined in next section.



Fig. 17. Test case 7: comparison between exact (—) and numerical solutions at t = 5 s obtained with approaches ðpb=qwÞ
að� � �Þ; ðpb=qwÞ
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4.1. Approximate Riemann solution

To introduce the finite volume scheme, (107) is integrated in a volume or grid cell X:
@

@t

Z
X

UdXþ
Z

X
ð~rEÞdX ¼

Z
X

SdX ð109Þ
and applying the Gauss theorem becomes
@

@t

Z
X

UdXþ
I
@X

Endl ¼
Z

X
SdX; ð110Þ
where n ¼ ðnx;nyÞ is the outward unit normal vector to the volume X.
In order to obtain a numerical solution of system (107) we divide the domain in computational cells, Xi, using a mesh

fixed in time. Let Dt be the time step and tn ¼ nDt a generic time. Assuming the usual notation we indicate with Un
i the

cell-average value of the solution Uðx; y; tÞ for the ith cell at time tn:
Un
i ¼

1
Ai

Z
Xi

Uðx; y; tnÞdx; ð111Þ
where Ai is the cell area. Assuming a piecewise representation of the conserved variables (110) is written as
@

@t

Z
Xi

UdXþ
XNE

k¼1

Ejnklk ¼
Z

Xi

SdX; ð112Þ
with Ej the value of the function E at the neighbouring cell j connected through the edge k;nk ¼ ðnx;nyÞ, is the outward unit
normal vector to the cell edge k; lk is the corresponding edge length and NE is the number of edges in cell i. Considering that
the quantity Ei is uniform per cell i and that
XNE

k¼1

nklk ¼ 0: ð113Þ
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Eq. (112) is written as
@

@t

Z
Xi

UdXþ
XNE

k¼1

ðdEÞknklk ¼
Z

Xi

SdX; ð114Þ
with dE ¼ Ej � Ei.
In the Roe approach, the solution of each RP is obtained from the exact solution of a locally linearized problem. In the 2D

framework the solution is obtained reducing each RP at each k edge to a 1D Riemann problem projected onto the direction n.
The linearized solution must fulfill the Consistency Condition. In the 2D case the integral of the approximate solution bUðx0; tÞ
of the k linearized RP over a suitable control volume must be equal to the integral of the exact solution Uðx0; tÞ over the same
control volume, with x0 the coordinate normal to the cell edge k, Fig. 25. Then in each k Riemann problem with initial values
Ui;Uj, in a time interval [0,1] and a space interval ½�X0;X 0� , where
�X0 6 kmin; X0 P kmax ð115Þ
and kmin; kmax the positions of the slowest and the fastest wave at t = 1, in a k egde, the solution bUðx0;1Þ at time t = 1 must
satisfy the following property:
Z þX0

�X0
bUðx0;1Þdx0 ¼

Z þX0

�X0
Uðx0;1Þdx0; ð116Þ
so using (114) the Consistency Condition becomes:
Z þX0

�X0
bUðx0;1Þdx0 ¼ X0ðUR þ ULÞ � dEnþ

Z 1

0

Z þX0

�X0
Sdx0 dt: ð117Þ
Since the source terms are not necessarily constant in time, we assume the following time linearization of the Consistency
Condition:
Z þX0

�X0
bUðx0;1Þdx0 ¼ XðUR þ ULÞ � ðdE� TÞknk; ð118Þ



Fig. 19. Test case 9: comparison between exact (—) and numerical solutions at t = 5 s obtained with approaches ðpb=qwÞ
að� � �Þ;

ðpb=qwÞ
bð� � �Þ; ðpb=qwÞ

cð�M�Þ and ðpb=qwÞ
c;wð�N�Þ.
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where following previous work, [20]
Z þX0

�X0
Sðx0;0Þdx0 ¼ ðTnÞnk ; ð119Þ
where T is a suitable numerical source matrix. This enables the following formulation of (114)
@

@t

Z
X

UdXi þ
XNE

k¼1

ðdE� TÞknklk ¼ 0; ð120Þ
that is approximated by using the following linear problem
@
@t

R
X
bUdXi þ

PNE

k¼1
J�n;kdbUklk ¼ 0;

bUðx0;0Þk ¼ Ui if x0 < 0;
Uj if x0 > 0:

� ð121Þ
Integrating the previous PDE system over the same control volume the following expression is obtained in each k edge
Z þX0

�X0
bUðx0;1Þdx0 ¼ XðUi þ UjÞ � J�ðUj � UiÞ ð122Þ
and since we want to satisfy (118), the constraint that follows is:
ðdE� TÞknk ¼ eJ�ðUiþ1 � UiÞ: ð123Þ
Due to the non-linear character of the flux E, the definition of an approximated Jacobian matrix, eJn;k, allows for a local
linearization
dðEnÞk ¼ eJn;kdUk ð124Þ



Fig. 20. Test case 10: comparison between exact (—) and numerical solutions at t = 5 s obtained with approaches ðpb=qwÞ
að� � �Þ; ðpb=qwÞ

b
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and is exploited here [14]. This approach provides a set of three real eigenvalues ~km
k and eigenvectors ~em

k . Then, it is possible
to define two approximate matrices eP ¼ ð~e1; ~e2; ~e3Þ and eP�1 with the following properties
eJn;k ¼ ePk

eKk
eP�1

k : ð125Þ
The difference in vector U across the grid edge is projected onto the matrix eigenvectors basis and the same for the source
term:
dUk ¼ ePkAk; ðTnÞk ¼ ePkBk; ð126Þ
with Ak ¼ a1 a2 a3
	 
T

k and Bk ¼ b1 b2 b3
	 
T

k . Expressing all terms more compactly:
dðEnÞk � ðTnÞk ¼
XNk

m¼1

ð~k ha~eÞmk ; ð127Þ
with
hm
k ¼ 1� b

~ka

� �m

k
ð128Þ
it is possible to define the desired matrix in (123)
eJ�k ¼ ðeP eK�eP�1Þk; ð129Þ
with eK� ¼ eKH, where eKkis a diagonal matrix with eigenvalues ~km;�
k in the main diagonal and Hk is a diagonal matrix with hm

k

in the main diagonal:
eKk ¼
~k1 0 0
0 ~k2 0
0 0 ~k3

